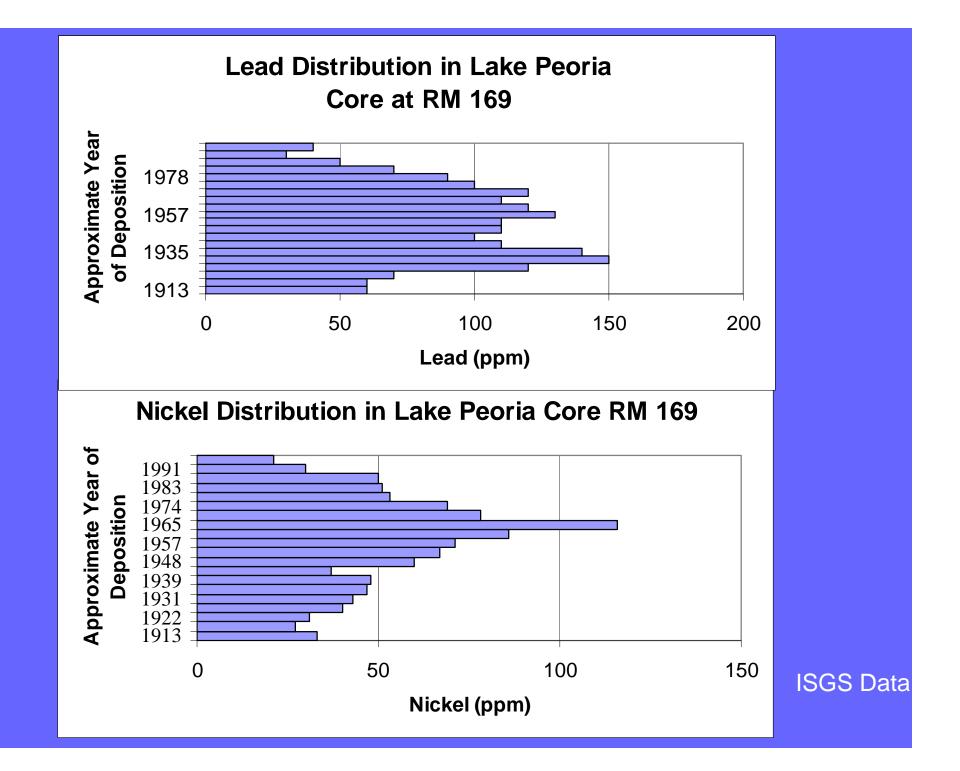
Illinois River Sediment as Topsoil: Current Assessment


Dr. Robert Darmody University of Illinois, Department of Natural Resources and Environmental Sciences

Dr. John Marlin Illinois Waste Management and Research Center

Characteristics of 20 Sediment Cores from 20 mile Reach of Peoria Lake

Parameter	mean	range
Sand %	6	1 — 44
Silt %	4 0	<mark>26 – 5</mark> 6
Clay %	<mark>54</mark>	19-72
Total P mg/kg	1003	574 -1660
TKN mg/kg	1138	117 – 3020
Inorganic C %	1.3	0.3 - 4.0
Organic C %	2.9	1.3 - 5.9

Sediment Utilization Research Projects

- Greenhouse I study of plant growth and metal uptake in sediments
- Greenhouse II study of plant growth and metal uptake in sediment - biosolid mixtures
- Field corn and soybean plots of sediments on sandy soils

Collection of Sediment for Greenhouse I Experiment

Greenhouse Experiment I Crop Yields

Within pairs, sediment on left, topsoil on right

Metal Contents (mg kg⁻¹) of Soil and Sediments Used in the Greenhouse Experiment I

Material	Cd	Cr	Cu	Ni	Pb	Zn
Drummer- Flanagan	< 1	29	20	22	18	60
Fresh Sediment	3	48	43	38	40	241
Weathered Sediment	4	61	43	36	54	293

Note: Metal contents are somewhat higher in sediments than in topsoil.

Metal Contents (mg kg⁻¹) of Tomatoes Grown in Soils and Sediments in Greenhouse I

Material	Cd	Cr	Cu	Ni	Pb	Zn
Drummer- Flanagan	0.1	2	13	2	0.5	26
Fresh Sediment	0.4	< 2	12	1	0.4	25
Weathered Sediment	0.5	< 2	8	1	0.3	21
Peoria	0.4	< 2	10	1	0.2	20
Champaign	0.2	3	21	13	0.9	21

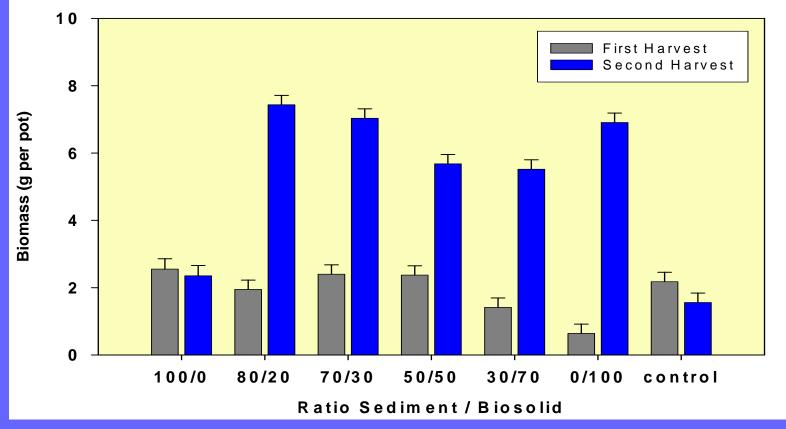
Note: Metal content of tomatoes grown in sediment was not significantly different from those grown in topsoil or in back yard gardens.

Greenhouse Experiment II

Experimental Design

Treatment	Sediment %	Biosolids %		
1	100	0		
6	70	30		
7	50	50		
10	0	100		
16	Control = Standard Greenhouse Mix			

Greenhouse Experiment II Sediments + Biosolids


Start of experiment

End of experiment

Yields in Greenhouse II

Snapbean Yield, First and Second Harvest

Note: Biosolids had a impact on yields primarily because no fertilizer was added. Salts in biosolids depressed initial yield, leaching salts increased yield.

Snapbean Metal Concentration, Greenhouse II

Treatment	As	Mo	Cu	Zn	
S-B	mg kg ⁻¹				
100-0 †	0.2	15	5	31	
70-30	0.2	5	6	52	
50-50	0.2	5	6	58	
0-100	0.7	9	9	101	
control	0.2	7	3	22	

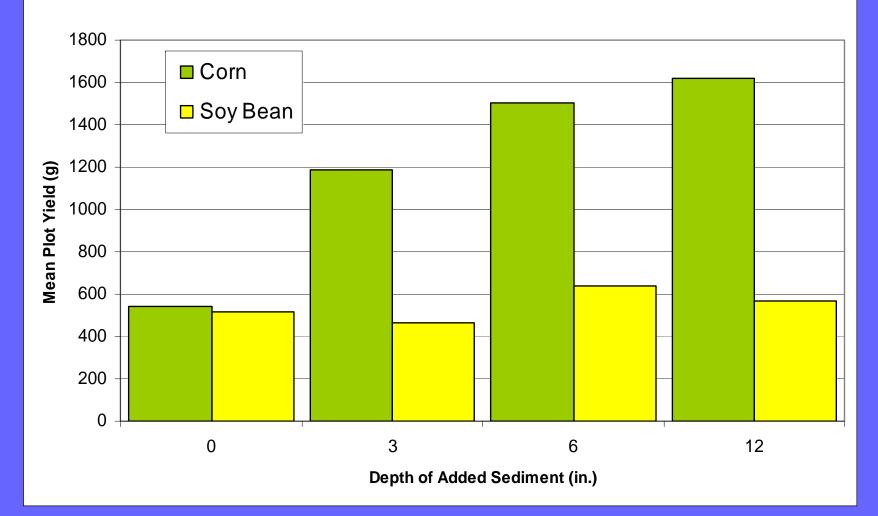
† Sediment % - Biosolid %

Note: Snapbeans grown in 100% biosolid had higher As, Cu and Zn, 100% sediment plants had higher Mo. Mixing the two decreased metal uptake.

Sand Farm Sediment Research Plots

0, 3, 6, and 12 Inches of Sediment Added to Sand Soil in 3 research plots

Sand Farm Crop Harvest


Corn plant height at harvest time

Sand Farm Corn Ears Sediment vs. Native Soil

Sand Farm Crop Harvest

Harvest at Sand Farm Sediment Plots 2001-2004

Note: Sediment Increased yield due to increased soil moisture holding and fertility.

Summary of Research Project Results

- Sediment metal content may be elevated compared to background for soil and varies with depth and location in the river.
- Metal uptake is noted in plants grown on sediments, but levels are generally not at hazardous amounts.
- Sediments make fertile topsoil, plants grow well on prepared sediments.

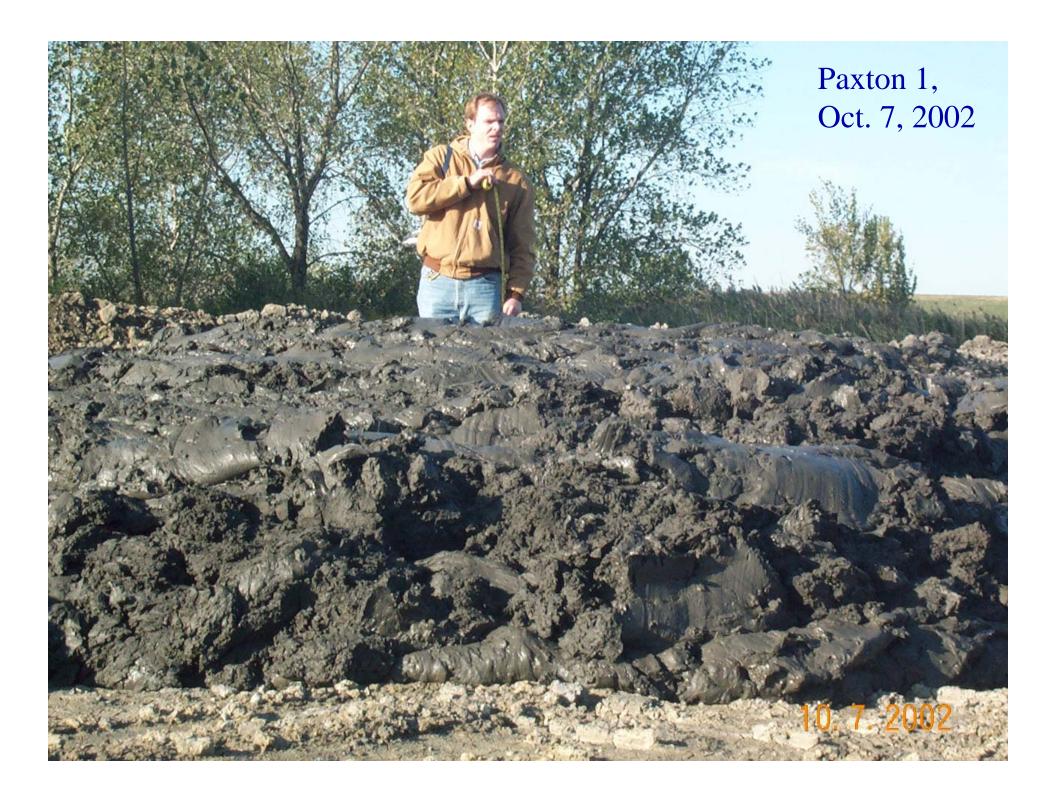
Sediment Utilization Demonstration Projects

- East Peoria Park, topsoil on brownfield
 Paxton Landfill, plant growth on landfill cover
- 3. Banner Marsh, drying and weathering
- 4. USX, brownfield reclamation

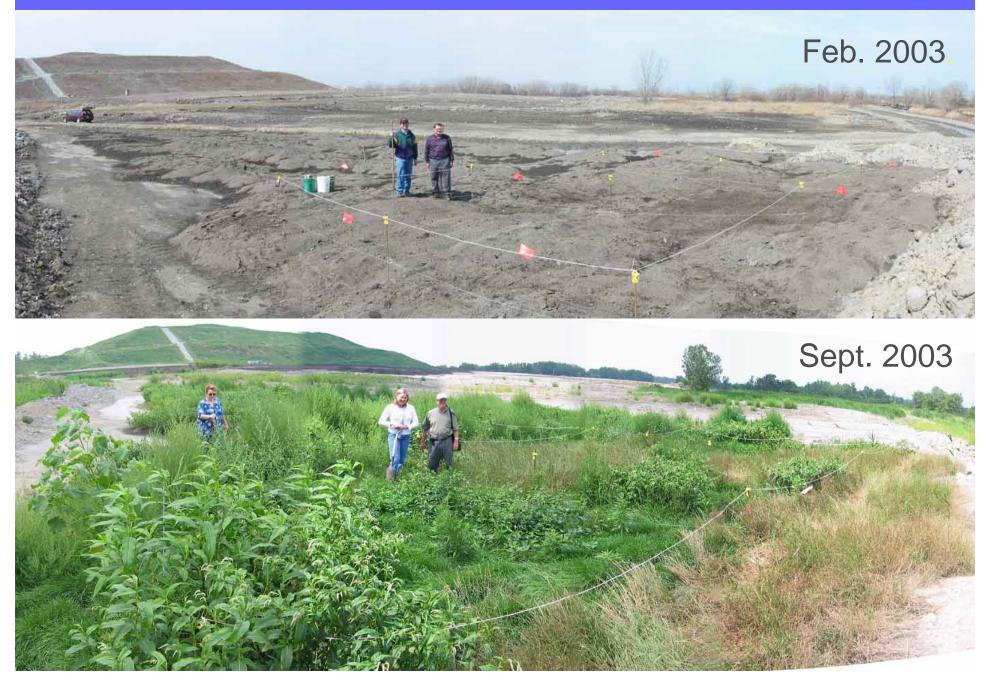
East Peoria Sediment Demonstration Site

1 Alexand Milliman and the

East Peoria Sediment Demonstration Site, 1 month after application



East Peoria Sediment Demonstration Site, four months later



Five years after sediment application Riverfront Park

Paxton 1 Sediment Plot

John Marlin, out standing in his field

i.e. the USX sediment south site

Summary of Demonstration Projects

- Sediment is a fluid paste initially, then dries to a hard state, then weathers to form soil aggregates.
- Plants will grow in prepared / weathered sediments.
- With time, sediment makes good topsoil.

Take Home Message

- Sediment we used has no inherent properties that would preclude use as topsoil substitute.
- Mixing of sediment and biosolid increase plant growth and decrease metals uptake.
- Poor initial physical structure improves with weathering.
- Sediment may take a long time to dry, best to let it dry in thin layers

